US009176736B2

a2 United States Patent 10) Patent No.: US 9,176,736 B2
Aila et al. 45) Date of Patent: *Nov. 3, 2015
(54) SYSTEM AND METHOD FOR PERFORMING GOG6F 15/00 (2006.01)
PREDICATED SELECTION OF AN OUTPUT GOG6F 9/00 (2006.01)
REGISTER GOG6F 9/44 (2006.01)
)] (52) US.CL
(71) Applicant: NVIDIA Corporation, Santa Clara, CA CPC oo, GO6F 9/30058 (2013.01); GOSF 7/38
us) (2013.01); GOGF 9/00 (2013.01); GO6F 9/44
. L. . (2013.01); GOGF 15/00 (2013.01)
(72) Inventors: Tlmf) Oské.ll‘l Aila, Tuusula (FI); Samuli (58) Field of Classification Search
Matias Laine, Vantaa (FI) None
(73) Assignee: NVIDIA Corporation, Santa Clara, CA See application file for complete search history.
(as) (56) References Cited
(*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS
patent is extended or adjusted under 35 i
U.S.C. 154(b) by 0 days. 2005/0038978 Al* 2/2005 Nickollsetal. 712/209
This patent is subject to a terminal dis- * cited by examiner
claimer. Primary Examiner — Corey S Faherty
(21) Appl. No: 14/019.474 (74) Attorney, Agent, or Firm — Zilka-Kotab, PC
ppl. No.:
’ (57) ABSTRACT
(22) Filed: Sep. 5, 2013 A system includes a processor having an instruction register
. L for storing an instruction having a predefined opcode, a predi-
(65) Prior Publication Data cate register for storing a predicate condition to select an
US 2014/0006754 Al Jan. 2, 2014 output register for a result of thf: instruction, a first output
register, and a second output register. The processor further
includes processor circuitry operable to execute the instruc-
Related U.S. Application Data tion to produce a result, and processor circuitry operable to
. . L store the result of the instruction in the first output register if
(63) E/[Oamlil ;1 aggil ooflggvpggflt;\?g 2105'5152(;;20’963’ filed on the predicate condition to select the output s true, and to store
v ’ T T the second output register if the predicate condition to select
(51) Int.Cl the output is false. A single instruction is used to produce the
G0;$ F 9 /30 (2006.01) result, and to store the result of the instruction.
GO6F 7/38 (2006.01) 17 Claims, 4 Drawing Sheets

102

Assign o an instruction an output
predicale condition for selecting an output
register for storing the instruction’s result

{ 100

Y

104

Execuie the instruction and oblain a result

Y

108

Store resull o a first output if the oulput
predicate condilion is true, and to a second
output if the predicate condition is false

U.S. Patent Nov. 3, 2015 Sheet 1 of 4 US 9,176,736 B2

102 Ag 100

Assign to an instruction an output
predicate condition for selecting an output
register for storing the instruction’s result

% 104

Execute the instruction and obiain a result

% 106

Store result to a first ocutput i the output
predicale condition is true, and to a ssecond
output if the predicate condition is false

Fig. 1

502 g 200

Assign o an instruction an input predicale
condition for selecting an input argument
for application to the instruction’s opcode

v 102

Assign to an instruction an output
predicate condition for selecting an output
register for storing the instruction’s resul

%’ 204

Apply a first input argument to the opcode if the
input predicate condition is true, and apply a
second input argument to the opcode if the
input predicate condition is false

% 104

Execute the instruction and obtain a result

% 106

Store resuit to a first output if the output
predicate condition is true, and to g second
auiput if the predicale condition is false

Fig. 2

U.S. Patent Nov. 3, 2015 Sheet 2 of 4

302

Assign to an instruction an execution predicate
condition for executing the instruction

% 102

Assign to an instruction an ouiput
predicate condition for selecting an output
register for storing the instruction’s result

% 104

Execute the instruction and obiain a resulf

% 106

Store result 1o a first output if the output
predicate condition is true, and 1o a second
output if the predicate condition is false

Fig. 3

US 9,176,736 B2

g 300

U.S. Patent Nov. 3, 2015 Sheet 3 of 4 US 9,176,736 B2

g 400

402

Assign to an instruction an execution predicate
condition for executing the instruction

v 202

Assign to an instruction an input predicate
condition for selecting an input argument
for application to the insiruction’s opcode

v 102

Assign to an instruction an oulput
predicate condition for selecting an output
register for storing the instruction’s result

v 204

Apply a first input argument to the opcode if the
input predicate condition is true, and apply a
second inpul argument to the opcode if the
input predicate condition is false

% 104

Execute the instruction and obtain a result

% 106

Store resull to a first output if the ouiput
predicate condition is true, and to a second
output if the predicate condition is false

Fig. 4

U.S. Patent Nov. 3, 2015 Sheet 4 of 4 US 9,176,736 B2
& 500
508
510 °
Y Ve
Driver Global
Memory
502
3
8
Local Shéred PEA
Memuory
506 504
522 524 531 535 537
| | | |
| | | |
521 5 525 532 534 536

520

Fig. 5

530

US 9,176,736 B2

1
SYSTEM AND METHOD FOR PERFORMING
PREDICATED SELECTION OF AN OUTPUT
REGISTER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 12/780,963, filed May 17, 2010, the entire contents of
which are incorporated herein by reference. This application
incorporates by reference in its entirety each of the following
commonly-owned, filed US non-provisional patent applica-
tions:

U.S. application Ser. No. 12/780,964 entitled “System and
Method for Accelerated Ray-Box Intersection Testing,” and

U.S. application Ser. No. 12/780,965 entitled “System and
Method for Performing Ray Tracing Node Traversal in Image
Rendering.”

BACKGROUND

The present invention is related to a system and method for
selecting an output register for storing the result of an
executed instruction, and more particularly to a system and
method for performing a predicated selection of an output
register for storing the instruction’s result.

Ray-box intersection testing is a technique known in the
field of ray-tracing, whereby a ray is tested for intersection
with a box of a particular dimension.

Using conventional instructions, the ray-box intersection
test requires 19 instructions (the pseudo-code for which is
shown):

DEFINITIONS

B=Box (xmin,ymin,zmin,xmax,ymax,zmax)

O=ray origin (X,y,7)

D=ray direction (x,y,z)

invD=(1/Dx,1/D.y,1/D.z)

0oD=(0.x/D.x,0.y/D.y,azliz)

tminray=ray segment’s minimum t value

tmaxray=ray segment’s maximum t value

RAY-BOX

//Plane intersections (6x multiply-add)

float x0=B.xmin*invD[x]-OoD[x];

float y0=B.ymin*invD[y]-OoDJy];

float z0=B.zmin*invD[z]-OoD|z];

float x1=B.xmax*invD[x]-OoDI[x]; P
y1=B.ymax*invD[y]-OoD[y];

float z1=B.zmax*invD|[z]-OoD]z];

//Span intersection (12x min/max)

float tminbox=max(tminray,min(x0,x1),min(y0,y1),min
(20.21));

float tmaxbox=min(tmaxray,max(x0,x1),max(y0,y1),max
(20.21));

/[Overlap test (1x compare)

boot intersect=(tminbox<=tmaxbox);

return (tminbox,tmaxbox,intersect)

The large number of instructions needed to perform the
ray-box test creates a significant bottleneck in the ray-tracing
computation. Accordingly, what is needed is a system and
method which can carry out the ray-box intersection test more
rapidly.

float

SUMMARY

The present invention provides a system and method to
overcome the aforementioned disadvantages, and in particu-

10

15

20

25

30

35

40

45

50

55

60

65

2

lar enable a ray-box test to be carried out using fewer instruc-
tions. In a particular embodiment, the system includes a pro-
cessor having an instruction register for storing an instruction
having a predefined opcode, a predicate register for storing a
predicate condition to select an output register for a resu of the
instruction, a first output register, and a second output regis-
ter. The processor further includes processor circuitry oper-
able to execute the instruction to produce a result, and pro-
cessor circuitry operable to store the result of the instruction
in the first output register if the predicate condition to select
the output is true, and to store the second output register if the
predicate condition to select the output is false. A single
instruction is used to produce the result, and to store the result
of the instruction.

These and other aspects and features of the invention will
be understood in view of the following drawings and descrip-
tion of exemplary embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a first exemplary method for performing
a predicated selection of an output register for storing an
instruction’s result in accordance with the invention.

FIG. 2 illustrates a second exemplary method for perform-
ing a predicated selection of an output register for storing an
instruction’s result in accordance with the invention.

FIG. 3 illustrates a third exemplary method for performing
a predicated selection of an output register for storing an
instruction’s result in accordance with the invention.

FIG. 4 illustrates a fourth exemplary method for perform-
ing a predicated selection of an output register for storing an
instruction’s result in accordance with the invention.

FIG. 5 illustrates an exemplary system operable to execute
the methods of FIGS. 1-4.

For clarity, previously-defined features retain their refer-
ence indicia in subsequent drawings.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

FIG. 1 illustrates a first exemplary method 100 for per-
forming a predicated selection of an output register for storing
an instruction’s result in accordance with the invention. At
102, an executable instruction is assigned an output predicate
condition for selecting an output register into which the
instruction’s result is written/stored. At 104, the instruction is
executed. At 106, the instruction’s result is stored to a first
output register if the output predicate condition is true, and
the result is stored to a second output register if the output
predicate condition is false. In a particular embodiment, the
operations 104 and 106 of executing and storing the result to
the first or second output register are performed using a single
instruction. In a further embodiment, operation 102 is per-
formed separately from (e.g., prior to) operations 104 and
106.

The following pseudo-code illustrates an exemplary
instruction in accordance with FIG. 1.

(P?Rd0:Rd1)=OPRa,Rb,Rc

If the output predicate condition P is true, the result of
opcode OP is written to output register R.d0. If P is false, the
result is written to output register Rd1. Terms Ra, Rb and Re
are input arguments.

As can be understood, this instruction replaces two predi-
cated instructions:

@PRAO=OPRa,Rb,Rc

@!PRd1=OPRa,Rb,Rc

US 9,176,736 B2

3

Above, the expression “@P” means the instruction is
executed if P is true, and the expression “@!P” means the
instruction is exeucted if P is false.

The obtainable performance improvement, compared to
above conventional solution, is therefore proportional to the
fraction of instructions benefiting from this method.

FIG. 2 illustrates a second exemplary method 200 for per-
forming a predicated selection of an output register for storing
an instruction’s result in accordance with the invention, in
which previously defined operations retain their reference
indicia. In this method, the predicated selection of an output
register shown in FIG. 1 is combined with a predicated selec-
tion of an input argument.

Operation 202 includes assigning to the executable instruc-
tion, an input predicate condition for selecting between two
input arguments/operands, one of which is to be applied to the
instruction’s opcode. Operation 102 includes assigning an
output predicate condition for selecting between two output
registers, as described in FIG. 1 above. Operation 204
includes applying a first input argument to the instruction’s
opcode if the input predicate condition is true, and a second
input argument to the instruction’s opcode if the input predi-
cate condition is false. Operations 104 and 106 are as
described above, whereby the instruction is executed and a
result obtained, and the result is stored in a first output register
if the output predicate condition is true and stored in a second
output register if the output predicate condition is false. In a
particular embodiment, the operations 204, 104, and 106 of
applying the first or second input argument, executing the
instruction to obtain a result, and storing the result to the first
or second output register are performed using a single instruc-
tion. In a further embodiment, operations 202 and 102 (one or
both) are performed separately from (e.g., prior to) operations
204, 104 and 106. In another embodiment, operations 202,
102, 204, 104 and 106 are carried out using a single instruc-
tion.

The following pseudo-code shows an exemplary format of
an instruction in accordance with FIG. 2, the pseudo code
including an output predicate condition P(O) for selecting
output registers Rd0 and Rd1 and an input predicate condition
P(I) for selecting input arguments Ra0 and Ral:

(P(O)?Rd0:Rd1)=OP(P()48 Ra0:Ral),Rb,Rc

FIG. 3 illustrates a third exemplary method 300 for per-
forming a predicated selection of an output register for storing
an instruction’s result in accordance with the invention, in
which previously defined operations retain their reference
indicia. In this method, the predicated selection of an output
register shown in FIG. 1 is combined with the predicated
execution of an instruction.

Operation 302 includes assigning to the executable instruc-
tion, a predicate condition for executing an instruction P(E).
Operation 102 includes assigning an output predicate condi-
tion P(O) for selecting between two output registers, as
described in FIG. 1 above. If the predicate condition for
executing the instruction P(E) is true, operation 104 is carried
out, whereby the instruction is executed and a result obtained,
and the result is stored in a first output register if the output
predicate condition is true and stored in a second output
register if the output predicate condition is false. If the predi-
cate condition for executing the instruction P(E) is false, the
instruction is not executed. In a particular embodiment, the
operations 102-106 are performed using a single instruction.
In a further embodiment, operations 302 and 102 one or both)
are performed separately from (e.g., prior to) operations 104
and 106. In another embodiment, operations 302, 102, 104
and 106 are carried out using a single instruction.

10

15

20

25

30

35

40

45

50

55

60

65

4

The following pseudo-code shows an exemplary format of
an instruction in accordance with FIG. 3, the pseudo code
including a predicate condition for executing the instruction
P(E), and an output predicate condition P(O) for selecting
output registers Rd0 and Rd1:

@P(E)(P(0)?Rd0:Rd1)=OPRa,Rb,Rc

If the instruction execution predicate P(E) is true, the
instruction is executed, whereby if the output predicate con-
dition P(O) is true, the result of opcode OP is written to output
register Rd0. If the instruction is executed and the output
predicate P(O) is false, the result is written to output register
Rd1. Terms Ra, Rb and Rc are input arguments. If the instruc-
tion execution predicate P(E) is false, the instruction is not
executed. For example, operations 102, 104 and 106 are not
carried out if the execution predicate condition for the instruc-
tion is false. Alternatively, operation 102 may be carried out
irrespective of the state of the execution predicate condition
(i.e., whether it is true of false).

FIG. 4 illustrates a fourth exemplary method 400 for per-
forming a predicated selection of an output register for storing
an instruction’s result in accordance with the invention, in
which previously defined operations retain their reference
indicia. In this method, the predicated selection of an output
register and input operand shown in FIG. 2 is combined with
the predicated execution of an instruction.

Operation 402 includes assigning to the executable instruc-
tion, a predicate condition for executing an instruction P(E).
Operations 202, 102, 204, 104, and 106 are as described
above. At operation 202, an input predicate condition P(I) is
assigned to the instruction for selecting between two input
arguments/operands, one of which is to be applied to the
instruction’s opcode. Operation 102 includes assigning an
output predicate condition P(O) for selecting between two
output registers, as described in FIG. 1 above. Operation 204
includes applying a first input argument to the instruction’s
opcode if the input predicate condition is true, and a second
input argument to the instruction’s opcode if the input predi-
cate condition is false. Operations 104 and 106 are as
described above, whereby the instruction is executed and a
result obtained, and the result is stored in a first output. reg-
ister if the output predicate condition is true and stored in a
second output register if the output predicate condition is
false. In a particular embodiment, the operations 204, 104,
and 106 of applying the first or second input argument,
executing the instruction to obtain a result, and storing the
result to the first or second output register are performed using
a single instruction. In a further embodiment, operations 402,
202 and 102 (one, several, or all) are performed separately
from (e.g., prior to) operations 204, 104 and 106. In another
embodiment, operations 402, 202, 102, 204, 104 and 106 are
carried out using a single instruction. Further exemplary,
operations 202, 102, 204, 104 and 106 are not carried out if
the execution predicate condition for the instruction is false.
Alternatively, operations 202 and/or 102 (either one or both)
may be carried out irrespective of the state of the execution
predicate condition (i.e., whether it is true of false).

The following pseudo-code shows an exemplary format of
an instruction in accordance with FIG. 4, the pseudo code
including an instruction execution predicate condition P(E)
for determining whether the instruction is to be executed, an
output predicate condition P(O) for selecting output registers
RdO and Rd1, and an input predicate condition P(I) for select-
ing between input arguments Ra0 and Ral:

@P(E)(P(0)?Rd0:RA1)=OP(P(I)?Ra0:Ral),Rb,Rc

US 9,176,736 B2

5

If the instruction execution predicate P(E) is true, the
instruction is executed. Upon execution of the instruction, a
selection is made between the input operands Ra0 and Ral,
depending upon the state of the input predicate condition P(I),
The result of the instruction is written to output register Rd0O
or Rdl, depending upon the state of the output predicate
condition P(O). If the instruction execution predicate P(E) is
false, the instruction is not executed.

In an exemplary application, each of the methods of FIGS.
1-4 is carried out as a part of a larger ray-tracing image
rendering process, in which a node traversal operation and a
primitive intersection operation are implemented. Specifi-
cally, a primitive intersection operation may be carried out
using a ray-box intersection test, as described in the Appli-
cant’s commonly-owned, copending US non-provisional
application “System and Method for Accelerated Ray-Box
Intersection Testing in Image Rendering,” Atty Dkt. No.
HE-08-0481 US, herein incorporated by reference in its
entirety. Further particularly, the ray-box intersection test
may employ operations as described herein, in which the
predicated selection of an output register is employed. Once
the node traversal and primitive intersection operations of the
ray tracing process are concluded, a scene of the intersected
geometric primitives can be drawn or rendered using tech-
niques known to the skilled person in computer graphics and
rendering.

FIG. 5 illustrates an exemplary system 500 operable to
execute the operations illustrated in FIGS. 1-4. System 500
may be implemented on a variety of different platforms, for
example, a computer or workstation, a game console, a hand-
held device such as a mobile telephone, or personal digital
assistant, a graphics card, or a graphics processing sub-sys-
tem which is implemented on a motherboard of a larger
system such as a computer motherboard or graphics card.

System 500 includes a processor 502 which is operable to
perform one or more of the operations illustrated in FIGS.
1-4, In a particular embodiment, the processor 502 which
includes a plurality of parallel processing architectures 504,
each configured to operate on a predetermined number of
threads. Accordingly, each parallel processing architecture
504 may operate in parallel, while the corresponding threads
may also operate in parallel. In a particular embodiment, the
parallel processing architecture 504 is a single instruction
multiple data (SIMD) architecture of a predefined SIMD
width or “warp,” for example 4, 8, 16,32, 64, 128,256, 512 or
more threads.

The processor 502 may further include local shared
memory 506, which may be physically or logically allocated
to a corresponding parallel processing architecture 504. The
system 500 may additionally include a global memory 508
which is accessible to each of the parallel processing archi-
tectures 504. The system 500 may further include one or more
drivers 510 for controlling the operation of the processor 502
in accordance with the methods of FIGS. 1-4, The driver(s)
510 may include one or more libraries for facilitating control
of the processor 502.

Further exemplary of a processor operable to process an
instruction in accordance with FIG. 1, the processor 502
includes an instruction memory architecture 520, which may
be physically located within the local shared memory 506,
within the global memory 508, or another memory device
(not shown) coupled to system 500. Instruction memory
architecture 520 includes an instruction register 521, an out-
put predicate register 522, a first output register 523, a second
output register 524, and an argument register 525. The
instruction register 521 is operable to store the operation code
(opcode) of the instruction which is to be executed. The

10

15

20

25

30

35

40

45

50

55

60

65

6

instruction register 521 may be of any arbitrary size, for
example a very long instruction word (VLIW), the length of
which may be 8-, 16-, 32-, 64-, 128-, 256-, 512-, 1028-bits
long, or longer. Further particular, the instruction may be
compatible with the Compute Unified Device Architecture
(CUDA™) computing architecture, in particular C for CUDA
programming. The instruction may be compatible with other
programming languages, for example programming lan-
guages used for graphics applications, such as OpenGL and
Direct3D.

Register 522 is operable to store the value (logical state) of
the output predicate condition which determines in which of
the first or second output registers the result of the instruction
will be stored. First and second output registers 523 and 524
are operable to store the result of the executed instruction, the
result written to one of the output registers 523 and 524 based
upon logic state (true or false) of the predicate condition in
register 522. Either output register 523 or 524 may be selected
to store the result if the predicate condition is true, and the
other register will be written to when the predicate condition
is false. The argument register 525 is operable to store the
input argument (which may be one or more arguments) which
is to be applied to the instruction’s opcode during execution to
produce the result. The registers 521-525 may be any arbi-
trary size to accommodate the size/width of the data words
stored therein.

Further exemplary of a processor operable to process an
instruction in accordance with FIG. 2, the processor 502
includes an instruction memory architecture 530, which may
be physically located within the local shared memory 506,
within the global memory 508, or another memory device
(not shown) coupled to system 500. Instruction memory
architecture 530 includes an instruction register 531, an out-
put predicate register 532, a first output register 533, a second
output register 534, registers 531-534 being as described for
registers 521-524 in instruction memory architecture 520.
Instruction memory architecture 530 further includes a first
argument register 535, a second argument register 536, and an
input predicate register 537. The first argument register 535 is
operable to store a first argument which is to be applied to the
opcode during instruction execution if the input predicate
condition is a first logical state (e.g., true), and the second
argument register 536 is operable to store a second argument
which is to be applied to the opcode during instruction execu-
tion if the input predicate condition is a second logical state
(e.g., false). The instruction memory further includes an input
predicate register 537 which is operable to store the value
(logical state) of the input predicate condition. The registers
521-525 may be any arbitrary size to accommodate the size/
width of the data words stored therein.

The instruction memory architectures 520 and 530 are
included within a larger instruction set architecture of the
processor 502, the instruction set architecture of the processor
502 including the aforementioned instructions and registers,
along with other components such as addressing, interrupt
and exception handling modules, as known in the art of
instruction set architecture design. Similarly, the instructions
described herein may be included within an instruction set
which is operable on the processor 502. The processor 502
includes processing circuitry and logic gates (i.e., the proces-
sor’s microarchitecture) such as adders, counters, registers
ALUgs, etc., to carry out each of the operations described in
FIGS. 1-4 above.

The processor 502 may be implemented in various forms,
for example, a central processing unit (CPU) intended to
operate centrally within a computer or other programmable
system. In another embodiment, the processor 502 is imple-

US 9,176,736 B2

7

mented as a graphics processing unit (GPU) which may be
adapted for visual computing applications, or alternatively, as
a general purpose GPU (GPGPU) implemented to carry out
many functions normally performed by a CPU. In another
embodiment, the processor 502 may be implemented as a
microprocessor embedded within a larger/more complex
device or system, the microprocessor omitting memory or
other peripheral components provided by the larger device/
system. A non-exhaustive list of the aforementioned systems
which may incorporate the processor 502 of the present
invention includes computers, workstations, cellular tele-
phones, game consoles, and motherboards. The present
invention can be implemented, e.g., to perform a ray-tracing
process which is more computationally efficient compared to
conventional techniques for performing ray-tracing. Exem-
plary applications using the improved ray-tracing process
include collision detection, and graphics rendering in com-
puter games, flight simulation, geographic information sys-
tems, medical imaging, and other applications in which
graphics rendering is used.

Particular embodiments of the processor 502 are as fol-
lows:

A processor includes an instruction register (e.g., 521, 531)
for storing an instruction having a predefined opcode, a predi-
cate register (e.g., 522, 532) for storing a predicate condition
to select an output register for a result of the instruction, a first
output register (e.g., 523, 533), and a second output register
(e.g., 524, 534). The processor further includes processor
circuitry operable to execute the instruction to produce a
result in accordance with operation 104, and processor cir-
cuitry operable to store the result of the instruction in the first
output register if the predicate condition to select the outputis
true, and the second output register if the predicate condition
to select the output is false, in accordance with operation 106.
Further particularly, the processor is operable with a single
instruction to produce the result and to store the result of the
instruction within the selected output register.

The aforementioned processor may further include a sec-
ond predicate register (e.g., 537) for storing a predicate con-
dition to select an input argument for application to the
opcode. In this embodiment, the processor further includes
processor circuitry operable to apply a first input argument to
the opcode if the predicate condition for selecting the input
argument is true, and apply a second input argument to the
opcode if the predicate condition for selecting the input argu-
ment is false, in accordance with operation 204. Further par-
ticularly, the processor is operable with a single instruction to
apply the input argument, produce the result, and to store the
result of the instruction in accordance with FIG. 2

In an alternative embodiment the second predicate register
(e.g., 537) may be used for storing a predicate condition to
execute the instruction. In this embodiment, the processor
further includes processor circuitry operable to execute the
instruction if the predicate condition for executing the
instruction is true, and to suspend execution of the instruction
if the predicate condition for executing the instruction is false.
Further particularly, the processor is operable with a single
instruction to produce the result and to store the result of the
instruction in accordance with FIG. 3.

Further alternatively, the aforementioned processor
employing a first register to store an output predicate condi-
tion and a second register to store an input predicate condition
may further include a third register (not shown) for storing a
predicate condition to execute the instruction. In this embodi-
ment, the processor further includes processor circuitry oper-
able to execute the instruction if the predicate condition for
executing the instruction is true, and to suspend execution of

20

40

45

8

the instruction if the predicate condition for executing the
instruction is false. Further particularly, the processor is oper-
able with a single instruction to execute the instruction, apply
the input argument, produce the result, and to store the result
of the instruction in accordance with FIG. 4.

Exemplary, the aforementioned processor may be a paral-
lel processing architecture. Further exemplary, the single
instruction is an instruction in a ray-box testing method.
Further exemplary, the single instruction is a very long
instruction word (VLIW). Further exemplary, the opcode of
the single instruction is operable to perform an arithmetic
operation.

Particular embodiments of the methods of FIGS. 1 and 2
utilizing the processor 502 are as follows:

Using a processor (e.g. 502) having an instruction register
(e.g., 521, 531) storing a instruction having a predefined
opcode, a predicate register (e.g., 522, 532) for storing a
predicate condition for the selecting an output register oper-
able to store a result of the instruction, a first output register
(e.g., 523, 533), and a second output register (e.g., 524, 534),
executing an instruction to produce a result in accordance
with operation 104, and storing the result of the instruction to
the first output register (e.g., 523, 533) if the predicate con-
dition for selecting the output is true, and the second output
register (e.g., 524, 534) if the predicate condition for selecting
the output is false. Further exemplary, the operations of
executing and storing are performed using a single instruc-
tion.

Further exemplary to the forgoing operations, the proces-
sor includes a second predicate register (e.g., 537) for storing
a predicate condition to select an input argument for the
opcode. In this embodiment, the method further includes
applying a first input argument to the opcode to produce the
result if the predicate condition for selecting the input argu-
ment is true, and a second input argument to the opcode to
produce the result if the predicate condition for selecting the
input argument is false, in accordance with operation 204.
Further exemplary, the operations of applying the first or
second input argument, executing the instruction and storing
the result are performed using a single instruction. Alterna-
tively, the second predicate register may store a predicate
condition to execute the instruction. Further, in the embodi-
ment in which the processor includes a first predicate register
for storing a predicate condition for the selecting an output
register and a second predicate register for storing a predicate
condition for selecting an input operand, the processor further
includes a third predicate register for storing a predicate con-
dition for execution the instruction.

Exemplary, the aforementioned processor may be a paral-
lel processing architecture. Further exemplary, the single
instruction is an instruction in a ray-box testing method.
Further exemplary, the single instruction is a very long
instruction word (VLIW). Further exemplary, the opcode of
the single instruction is operable to perform an arithmetic
operation.

EXAMPLES

The above-described instructions utilizing predicated
selection of output register are useful whenever an algorithm
needs to update one of two values based on a predicate. This
happens quite often in geometric computations where the
predicate typically corresponds to a sign bit. Ray-box inter-
section test is of particular interest because it is on the critical
path of ray tracing implementations. Embodiments of exem-
plary ray-box intersection tests are disclosed in Applicant’s
commonly owned, copending US non-provisional applica-

US 9,176,736 B2

9

tion entitled “System and Method for Accelerated Ray-Box
Intersection Testing,” Atty Dkt No. HE-08-0481 US, herein
incorporated by reference in its entirety.

Using the new instructions in which predicated selection of
the output register is employed, the previously described
ray-box intersection test which required 19 instructions
requires only 13 instructions (pseudo-code shown):

RAY-BOX Using new predicated output register

//Plane intersections (6xmultiply-add)

(Dx>=0 ? tx0:tx1)=B.xmin*invD[x]-OoD|[x];

(Dx>=0 ? tx1:tx0)=B.xmax*invD[x]-OoD[x];

(D.y>=0 ? ty0:ty1)=B.ymin*invD[y]-OoD[A];

(D.y>=0 ? tyl:ty0)=B.ymax*invD[y]-OoD[y];

(D.z>=0 ? tz0:tz1)=B.zmin*invD|z]-OoD]z];

(D.z>=0 ? tz1:1z0)=B.zmax*invD[z]-OoD|z];

//Span intersection (6xmin/max)

tmin=max(max(tmin_ray,tx0), max(ty0,tz0));

tmax=min(min(tmax_ray,tx1), min(ty1 ,tzl);

/[Overlap test (1xcomparison)

bool intersect=(tmin<=tmax);

The three predicates (e.g. D.x>=0) can be determined dur-
ing and kept registers.

In a specific application, the critical path of a bounding
volume hierarchy ray tracer consist of two ray-box tests, 4
memory fetches, and approximately 10 instructions for deci-
sion making. Predicated selection of output register thus
offers a speedup of approximately 30% (i.e., 2¥19+14=52
(conventional) versus 2*13+14=40 (new)) to traversal perfor-
mance.

In a further example, predicated selection of input argu-
ments is employed in addition to the output register. This
allows instructions to modify one of two values. For example,
if(P) tmin0=max(tmin0, tval);
else tminl=max(tminl, tval);
updates either tminl or tminl based on a predicate. By offer-
ing predication to both inputs and output, it can be imple-
mented using a single instruction:

(P(0)?min0:minl)=max((P{J)?min0:fminl),tval)

This, in conjunction with the fast ray-box test (above)
allow a roughly 70% speedup in traversal performance.

As readily appreciated by those skilled in the art, the
described processes and operations in FIGS. 1 and 2 may be
implemented in hardware, software (a computer program
element), firmware or a combination of these implementa-
tions as appropriate. In addition, some or all of the described
processes and operations may be implemented as computer
readable instruction code resident on a computer readable
medium or product, the instruction code operable to control a
computer of other such programmable device to carry out the
intended functions. The computer readable medium on which
the instruction code resides may take various forms, for
example, a removable disk, volatile or non-volatile memory,
etc.

The terms “a” or “an” are used to refer to one, or more than
one feature described thereby. Furthermore, the term
“coupled” or “connected” refers to features which are in
communication with each other (electrically, mechanically,
thermally, optically, as the case may be), either directly, or via
one or more intervening structures or substances. The
sequence of operations and actions referred to in method
flowcharts are exemplary, and the operations and actions may
be conducted in a different sequence, as well as two or more
of the operations and actions conducted concurrently. The
described features are not limited only to their implementa-
tion in the exemplary embodiment described therefor, and the
skilled person will appreciate that these features can be

5

10

15

20

25

30

35

40

45

50

55

60

65

10

implemented in the other described embodiments of the
invention as well. Reference indicia (if any) included in the
claims serves to refer to one exemplary embodiment of a
claimed feature, and the claimed feature is not limited to the
particular embodiment referred to by the reference indicia.
The scope of the clamed feature shall be that defined by the
claim wording as if the reference indicia were absent there-
from. All publications, patents, and other documents referred
to herein are incorporated by reference in their entirety. To the
extent of any inconsistent usage between any such incorpo-
rated document and this document, usage in this document
shall control.

The foregoing exemplary embodiments of the invention
have been described in sufficient detail to enable one skilled
in the art to practice the invention, and it is to be understood
that the embodiments may be combined. The described
embodiments were chosen in order to best explain the prin-
ciples of the invention and its practical application to thereby
enable others skilled in the art to best utilize the invention in
various embodiments and with various modifications as are
suited to the particular use contemplated. It is intended that
the scope of the invention be defined solely by the claims
appended hereto.

What is claimed is:

1. A method comprising:

receiving an instruction having an opcode associated with

a first predicate condition and a second predicate condi-
tion;

executing the instruction to generate a result;

determining whether the first predicate condition is true;

if the first predicate condition is true, then storing the result

of the instruction in a first output register, or

if the first predicate condition is false, then storing the

result of the instruction in a second output register; and
determining whether the second predicate condition is
true; and

if the second predicate condition is true, then applying a

first input argument to the opcode, or

if the second predicate condition is false, then applying a

second input argument to the opcode.

2. The method of claim 1, wherein the opcode is associated
with a third predicate condition, and wherein executing the
instruction is performed only when the third predicate con-
dition is true.

3. The method of claim 1, wherein the instruction is
included in a program for performing a ray-box intersection
test.

4. The method of claim 1, wherein the instruction is a very
long instruction word (VLIW).

5. The method of claim 1, wherein the opcode specifies an
arithmetic operation.

6. The method of claim 1, wherein a processor, configured
to execute the instruction, includes a first predicate register
configured to store the first predicate condition and a second
predicate register configured to store the second predicate
condition.

7. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor, cause
the processor to perform steps comprising:

receiving an instruction associated with a first predicate

condition and a second predicate condition;

executing the instruction to generate a result;

determining whether the first predicate condition is true;

if the first predicate condition is true, then storing the result

of the instruction in a first output register, or

if the first predicate condition is false, then storing the

result of the instruction in a second output register; and

US 9,176,736 B2

11

determining whether the second predicate condition is

true; and

if the second predicate condition is true, then applying a

first input argument to the opcode, or

if the second predicate condition is false, then applying a

second input argument to the opcode.

8. The non-transitory computer-readable storage medium
of claim 7, wherein the opcode is associated with a third
predicate condition, and wherein executing the instruction is
performed only when the third predicate condition is true.

9. The non-transitory computer-readable storage medium
of claim 7, wherein the instruction is included in a program
for performing a ray-box intersection test.

10. The non-transitory computer-readable storage medium
of claim 7, wherein the instruction is a very long instruction
word (VLIW).

11. The non-transitory computer-readable storage medium
of claim 7, wherein the opcode specifies an arithmetic opera-
tion.

12. A processor comprising:

an instruction register for storing an instruction having an

opcode associated with a first predicate condition and a
second predicate condition;

a first predicate register for storing the first predicate con-

dition;

a second predicate register for storing the second predicate

condition;

a first output register; and

a second output register,

10

15

20

25

12

wherein the processor is configured to:

execute the instruction to generate a result,

determine whether the first predicate condition is true,

if the first predicate condition is true, then storing the
result of the instruction in the first output register, or

if the first predicate condition is false, then storing the
result of the instruction in the second output register,
and

determine whether the second predicate condition is
true, and

ifthe second predicate condition is true, then apply a first
input argument to the opcode, or

if the second predicate condition is false, then apply a
second input argument to the opcode.

13. The processor of claim 12, wherein the opcode is asso-
ciated with a third predicate condition, the processor further
comprising a third predicate register for storing the third
predicate condition, and wherein the processor is further con-
figured to only execute the instruction when the third predi-
cate condition is true.

14. The processor of claim 12, wherein the instruction is
included in a program for performing a ray-box intersection
test.

15. The processor of claim 12, wherein the instruction is a
very long instruction word (VLIW).

16. The processor of claim 12, wherein the processor is a
parallel processing architecture.

17. The processor of claim 12, wherein the processor is a
graphics processing unit.

#* #* #* #* #*

